Network Flow

Maximum Flow
Minimum Cut

What is Network Flow?

- Graph Theory
- Flow
- Direction
- A -> B
\bigcirc e.g. Water flowing through pipes

Concepts and Definitions

- "Source" - Node in the graph emitting the "flow"
- "Sink" - Node in the graph consuming the "flow"
- "Capacity" - the maximum amount of "flow" that can pass through this edge/node.
- "Flow" - the amount of material passing through this node/edge/graph.

Max Flow Problem

- What is the maximum flow from A to

Ford-Fulkerson

- Simple
- Initialize all flow counts to 0 .
- While there is an unsaturated path from source to sink:
- Find the minimum capacity of all edges in that path
- Increment the flow count of each edge in that path by the minimum
- Increment the global flow count by that minimum
- The total amount of flow in the global flow count is then maximum

Storage

- For each edge store:
- Capacity
- Current flow
- Undirected
- Depends on problem for optimal storage
- Store 2 flows (positive and negative) or sometimes 2 capacities.
- Depending on problem, positive may cancel out negative and vice versa.

Finding the path

- Method does not affect answer
- Affects running time
- Good choices (depending on problem)
- Shortest path (BFS)
- Path with maximum flow
- DFS - simplest

An example

- Determining maximal flow in the graph shown earlier

An example

- Choose a path and put flow through

An example

- Current flow = 1

An example

- Current flow $=3$

An example

- Current flow $=3$

An example

- Current flow = 5

An example

- Total flow = 5

Minimum Cuts

- Maximum flow problems are tied in with Minimum Cut problems
- Minimum Cut
- The minimum weighting of edges that separates two nodes (in this case source and sink)
- Sum of the weighting of cut edges = maximum flow through the network

An example

- Minimal cut $=1+2+2=5$

To find the minimum cut

- Create the maximum flow graph
- Select all nodes that can be reached from the source by unsaturated edges
- Cut all the edges that connect these nodes to the rest of the nodes in the graph
- This cut will be minimal

An example

- To find a minimal cut

Variations on Network Flow

o Multiple sources \& sinks - create a "supersource" or "supersink" which connects directly to each of these nodes, and has infinite capacity

Variations on Network Flow

- Node capacity - split the node into an "in" node, an "out" node and an edge

Conclusion

- Network flow problems
- Graph Theory
- Transporting some material from A to B
- Along pathways (edges) that have capacities
- Maximum flow is that maximum amount of material that can be transported from A to B.

